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Abstract. The renormalisation group scheme of Migdal and Kadanoff is applied to a 
ferromagnetic Potts model on two hierarchical lattices: in the two cases the renormalisation 
transformation is split into two elementary processes (parallel bonds or series bonds) and 
each lattice can be mapped onto the other one. It is then easy to deduce the characteristic 
parameters (critical exponents, repulsive fixed points, etc) of one lattice from those of the 
other lattice. Moreover the classical geometrical duality offers a third possibility of mapping 
and the relationship between the renormalisation and the duality methods is presented in 
the peculiar case of a two-dimensional lattice. 

1. Introduction 

Recently Melrose [ 11 and  Kaufman [2] have studied a class of hierarchical lattices in 
the framework of a general q-state Potts model. Hierarchical lattices have received 
much attention during recent years [3-101 because it is possible to obtain exact solutions 
by position space renormalisation group ( PSRG) methods with such lattices. Otherwise, 
on Euclidean lattices, the models are not solved exactly and one must use approximate 
procedures, the best known solution being initially proposed by Migdal [ l l ]  and 
Kadanoff [12]; in a first step the initial lattice was transformed by bond moving in 
order to be able to apply the PSRG. Another method, called ‘by decoration’, was 
introduced by Emery and Swendsen [13]. Melrose [ l ]  showed the existence of a 
duality relationship between the Migdal-Kadanoff (to be referred to as M K )  and the 
Emery-Swendsen ( ES) approaches. 

The aim of the present paper is to generalise and to make precise the results 
obtained by Melrose [ l ]  and Kaufman [2]; in particular an  attempt will be made to 
characterise and define the notions of ‘mapping’ and ‘duality’ with two special hierar- 
chical lattices: a rigorous relationship between these two sorts of transformation will 
be given. 

A hierarchical lattice can be defined such that starting from one bond between two 
sites, this bond can be replaced, in a first step, by a given pattern. Then this transforma- 
tion is repeated iteratively giving a dilation symmetry structure: figure 1 shows the best 
known hierarchical structure, the diamond lattice, for the first two iterative steps. The 
two peculiar hierarchical lattices studied here are defined as follows. 

(a )  The first one is represented in figure 2(a) .  It is a generalisation of that studied 
by Kaufman [ 2 ]  because we consider a chain of s links, each one made up by p parallel 
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Figure 1. Scheme for the iterative construction of the diamond hierarchical lattice. 
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Figure 2. Patterns of the two hierarchical lattices in the case p = 3, s = 4. ( a )  Necklace 
lattice. ( b )  Diamond lattice. 

bonds (in [ 2 ]  p = s, corresponding to a two-dimensional system). It will be called the 
'necklace' lattice. 

(b) The second hierarchical lattice is a generalisation of the diamond one (figure 
2 (  b ) )  and will be called improperly, but simply, the 'diamond' lattice. The basic pattern 
contains p lines of s bonds. 
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Two mappings will be defined on renormalisation considerations in order to deduce 
the physical results corresponding to one lattice from the results given by the other 
lattice. It will be seen that one of these mappings is very simple, the other one being 
much more complicated. These results can soon be obtained from the simple generic 
k ing  case ( q  = 2) [14]. 

The notion of geometrical duality is then introduced in the peculiar case s = p :  it 
is then possible to define a third mapping. The combination of the duality procedure 
with the simple mapping obtained by renormalisation simply gives the sophisticated 
mapping. 

2. The model 

The notation of the Potts model [15, 161 is briefly recalled. Each site interacts with 
its nearest neighbours with a strength J ( J  > 0 for a ferromagnetic interaction, J < 0 
for an antiferromagnetic one). For a given configuration of the system the Hamiltonian 
is 

where the eigenvalue S , ,  corresponding to the site labelled i ,  is included in the set 
[ l ,  . . . , q ] ,  6 is the usual Kronecker symbol and the bracket ( ) signifies that only 
first-neighbour sites are taken into consideration. Then the partition function is given 
by 

2 = exp[ -( 2/ kT)]  (2.2) 
{SI 

where {S} stands for a sum over all the configurations of the system. For convenience 
the parameter exp( J /kT) ,  which is equivalent to the temperature T, will be designated 
by x ( y )  for the necklace (diamond) lattice. Figure 2 presents one step of the iterative 
building for these two hierarchical lattices in a general case, i.e. for a non-integer 
dimensionality d. Here s = 4 and p = 3 and  then d = 1 +In 3/ln 4. The two first initial 
sites for the two lattices are called A‘ and B’, and  become A and B after the first 
iterative step. The parameter p counts the number of bonds starting from (arriving 
on) the points A(B); the parameter s measures the distance between A and B in bond 
units. 

The procedure of elaborating one lattice step by step from an  original link is 
opposite to the classical renormalisation method which aims to reduce the number of 
degrees of freedom. The application of a renormalisation step will be noted as by 
Itzykson and Luck ( I L )  [17] 

( a )  necklace: x ’ =  T N ( x )  (2.3) 

( b )  diamond: y ’ =  T,(y). (2.4) 

The transformations TN and  TD are not independent and  they can be expressed in 
terms of elementary processes which will be described in detail in the next section. 
Here an important remark should be made: in fact, the necklace lattice reproduces a 
possibility of bond moving according to the M K  method of PSRG applied to Euclidean 
lattices. 
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3. Renormalisation of the necklace and the diamond lattices: two ways for mapping 

These two hierarchical lattices can be built from two elementary mechanisms and, in 
a first intermediary step, one can replace the existing bond (figure 3)  by 

(a )  p parallel bonds 
(b)  s series bonds. 

If operation (a) is done first, followed by operation (b) this succession being noted 
(a-b), the necklace lattice is obtained. Evidently the succession (b-a) gives the diamond 
lattice. The two renormalisation transformations of figure 3 can be written analytically 
(see, for example, [ 1 7 ] ) :  

(a )  P , , : x + x ( " =  P p ( x ) = x p  (3.1) 

( y + q -  1 ) ' + ( 4 -  l ) ( y  - 1)' 
( y + q  - 1) '  - ( y -  1) '  

(b )  S, : y + y"'  = S s ( y )  = ' (3.2) 

In order to simplify the notation and avoid ambiguity P, and S, will be denoted P 
and S, respectively. The functions T N  and TD given by the expressions (2.3) and  (2.4) 
can be written as compositions of the functions P and S :  

(3.3) 

(3.4) 

x ' =  TN(X) = S(x"')  = S [ P ( x ) ]  

y ' =  TD(-v) = P ( y " ' )  = P [ S ( . Y ) ]  

T , = S o P  (3.5) 

T D = P o S .  (3.6) 

Now let us study some properties of P and S. If I is the inversion operator, i.e. 
the operator transforming an  attractive (repulsive) bond into a repulsive (attractive) 
one, the Potts state of one site limiting the considered bond is changed: 

and symbolically one can write 

x +  x - l .  (3.7) 

It is easy to see from (3.1) that 

P o I = I o P  forevery q. 

Then two inverse points, x and x - ' ,  of (3.7) are kept inverse by the transformation P 
and it induces no frustration. This result is not difficult to understand because only 
parallel bonds are considered: if the Potts state of one limiting site is changed, one 
must take the opposite sign for every bond energy. The problem is different for the 
series gathering, where in general a frustration appears which corresponds to the exotic 

10) lb) 

Figure 3. Elementary steps of the renormalisation transformation. ( a )  Parallel bonds. ( b )  
Series bonds. 
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phases first introduced by Berker [ 181. In the peculiar case q = 2 one can show easily 
from (3.2) that 

S o I = S  for s even 

s ~ I = I o s  for s odd. 

Two inverse points, y and y - ’ ,  have the same image and the frustration has been avoided. 
Moreover P is a good mapping of the variable x into the variable y, i.e. i f  one 

supposes. 

y = P ( x )  (3.8) 

then from (3.4) 

Y ’  = P [ S { P ( x ) } l  

and with (3.3) 

y ‘  = P ( x ’ ) .  (3.9) 

The expressions (3.8) and  (3.9) prove the stated property. A similar possibility of 
mapping for the variable y into the variable x with the aid of the transformation S is 
demonstrated with the same method: 

x = S ( y )  -9 x ‘ =  S ( y ’ ) .  (3.10) 

It is possible to summarise these two mappings with a diagram (see figure 4) where 
each line is horizontally shifted from the preceding one by half a step. 

Figure 4. Diagram presenting the renormalisation steps i horizontal arrows) for the necklace 
(variable x )  a n d  the diamond (variable y )  lattices. Sloped arrows are  associated to the 
mapping from one  lattice upon the other.  

Then, with these two mappings, all the parameters corresponding to one of the 
two hierarchical lattices can be deduced from those of the other lattice. It should be 
noted that the transformation P, such that y = P ( x )  = x”, offers a mapping which is 
much simpler than that for the transformation S. In particular for the unstable fixed 
points (characterised by an  asterisk): 

v* = x*p, (3.11) 

From this property it is easy to deduce the Julia set [19] of the diamond lattice 
from the Julia set of the necklace: if ( r ,  0 )  are the coordinates of a given point included 
into the Julia set of the necklace, the corresponding point for the diamond lattice is 
( r P ,  P O ) .  Figure 5 presents the Julia sets of the necklace ( a )  and ( b )  and the diamond 
( c )  and ( d )  with q = 2, in the cases ( p  = 4, s = 2 )  and ( p  = 2, s = 4).  
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Figure 5. Julia set of the necklace ( a ) ,  ( b )  and the diamond (c) ,  ( d )  lattices obtained for 
q = 2. The horizontal (vertical) axis corresponds to the real (imaginary) part of the roots 
obtained from the iterative transformations. The geometrical parameters are: necklace: 
( a )  p = 4 and s = 2; ( b )  p = 2 and s = 4; diamond: ( c )  p = 4 and s = 2; ( d )  p = 2 and s = 4. 

It is also interesting to look at the behaviour of the transformations S and P at 
the continuous limit of rescaling studied by I L  [ 171; the dimensionality d depends on 
the space dilation parameter 1 + E and the relations between s, p and d are 

S = 1 + &  where E<< 1 (3.12a) 

p = 1 + (d - 1 ) ~  (3.12b) 

and the two transformations S and P are given by, at first order in E and the variable 
z standing for x or y, 

P (z )  = z +  & r I ( Z )  (3.13a) 

S (  z )  = z + &U( z)  (3.13b) 

where 

I I ( z ) = ( d - l ) z l n z  

u(z)  = In ~ 

4 z + q - 1  
( z + q - l ) ( z - 1 )  z -1  

(3.14a) 

(3.14b) 
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and 

x’ = T N ( X )  = x + & P ( X )  

y ’ =  T d y )  = Y + & P ( Y )  

p (  z) = n(z) + a ( 2 ) .  

with 

( 3 . 1 5 ~ )  

(3 .15b)  

(3 .15c)  

The two transformations T N  and TD become identical in the continuous limit. 

4. Duality: a third way for mapping 

There is another method permitting the transformation of the necklace into the diamond 
lattice (or vice versa): this is the well known geometrical duality as initially defined 
by Kramers and Wannier [ 2 0 ] .  Figure 6 presents for a necklace ( a )  and a diamond 
( 6 )  initial lattices (dots and full lines) the corresponding dual lattices (crosses and 
broken lines). The dual of a necklace is a diamond (and vice versa) and the parameters 
s and p are exchanged by the transformation from the initial lattice into its dual. With 
the notation of [17 ] ,  the parameter associated to a bond is U = 6(x)  for the necklace 
and U = S ( y )  for the diamond, where the duality transformation 6 obeys 

(4.1 ) ( 1  - x)( 1 - S(x)) = q 

6 o s = n .  

the variable y giving the same expression. Moreover 6 is evidently involutive: 

In the important particular case s = p  = b ( d  = 2 )  the dual of figure 6 ( a )  is identical 
to the original lattice of figure 6 ( b )  and vice versa. Then U = 6(x) = y and U = 6 ( y )  = x 
and the duality mapping can be written 

(1 - x ) ( l  - y )  = q. (4.2) 

Figure 6. Geometrical duality in a general case. Here, in the initial lattice represented by 
dots and full lines the geometrical parameters are p ?  = 4, s, = 3. In  the dual lattice (broken 
lines and crosses) the geometrical parameters are inverted: pd = 4, sd = 3. ( a )  Necklace. 
( 6 )  Diamond. 
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This gives, taking (3 .8)  into account, a closed expression to calculate the unstable fixed 
points for the two lattices: 

( 4 . 3 ~ )  

( 4 . 3 6 )  

In the limit b+ 1, x * + y *  the two lattices are self-dual; then the expressions (4 .3 )  
reduce to 

(1 -x*)(  1 - x*b) = q 

(1 - y * ” h ) (  1 - y * )  = q. 

- 
x * = y * = 1 + J q  (4 .4)  

and the corresponding critical exponent, classically denoted by v, is 

Tables 1 and 2 present critical parameters and exponents for the necklace (which 
corresponds to a Euclidean lattice after the M K  bond moving) and the diamond lattices, 
with different q (table 1 where b is fixed and equal to 2 )  and b (table 2 in the Ising 
case q = 2 )  parameters. 

Always in the case d = 2 it is now possible to generalise the results of I L  [17]: 
starting, for instance, from a pattern of necklaces and remembering that x = 6 ( y )  and 
y = 6(x) we can transform it by duality as illustrated in figure 7. The transformation 
x + y“’ in figure 7 is exactly what is called the ‘general duality transformation’ in [ 171 

Table 1. Critical constants for the two lattices (the triangular lattice is renormalised by 
the M K  bond moving method and the critical parameters are the same as for the necklace 
lattice) with s = p = 2 and varying 4. The ’exact’ values for v are those given by den Nijs 
[211. 

x, (triangle 
0 y* (diamond) X * ( M K )  v* exact) I )  (exact) 

1 2.618 034 1.618 034 1.635 280 1.532 089 4 
(1  +v’5)/2 

2 3.382 976 1.839 287 1.338 266 1.732 051 (v ’3)  1 
3 4 2 1.204 710 1.879 385 6 

4 4.538 5847 2.130 395 1.124 161 1 3 

i 

100 25.620 448 5.061 6645 4.827 183 

Table 2. Critical constants for the necklace (-to the triangular lattice constants) and the 
diamond lattices for a given 4 (here this is only the simplest lsing model 4 = 2 which is 
taken under consideration) and varying s and p parameters (always with s = p in order 
that d = 2 ) .  

x * Y *  (approximate) b Y *  

1 1 + v 2  1 + q 2  1.3271 
2 3.382 976 1.839 287 1.3383 
3 4.236 068 1.618 034 1.3548 

4 5.023 384 1.497 094 1.3706 
2+J5  ( 1 + J 5  )/  2 
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X 

X 

X 

X 

Figure 7. Diagram showing the combination of renormalisation ( S  or P) and duality (61 
transformations in order to obtain the general duality transformations: ( U )  D ,  and ( b )  
D,. The sites of the initial lattices are represented by circles, the bonds by full lines. For 
the dual lattices the crosses correspond to the sites and the dotted lines to the bonds. 

and denoted by D. This transformation will be denoted DN(DD) for the necklace 
(diamond) lattice and 

DN=So 6 =  60  P ( 4 . 6 ~ )  
D D =  P 0 6 = 6 0 S. (4.6b) 

The case P 0 6 corresponds to the general duality transformation D ( x )  given by formula 
(5.14) in [ 171. The different possible steps of the transformations are given in figure 7. 

DN 0 Db = ( S  0 6 )  c ( 6  0 P )  = S O  P =  TN (4.7a)  
DDo D , = ( P o ~ ) o ( ~ o S ) = P O S =  T D .  (4.7b) 

The relations between DN and D D ,  on the one hand, and between TN and T,, on the 
other hand, are ( 6  = a-', 6 being involutive): 

Th = 6 0 TK,o 6 ( 4 . 8 ~ )  
TD = 6 0 TN 0 6. (4.8b) 

All these expressions are summarised in the commutative diagram of figure 8 where 
only the transformation 6 is reversible. 

The iteration of the duality transformations leads to 

DN = 6 0 DD0 6 

D D =  6 0 DN 0 6 

Figure 8. Summary of the ditferent possible transformations connecting the necklace and 
the diamond lattices. 
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Finally it is interesting to note that the difficult mapping P introduced in § 3 can 
be easily deduced from the simplest one ( S )  and the duality transformation S (always 
in the case s = p )  

(4.9) P =  6 0 s 0 S. 

5. Conclusion 

It has been shown [ 1-31 that the PSRG method is exact only on hierarchical (self-similar) 
lattices. On Euclidean lattices one must develop approximate methods for bond 
moving. In this paper, we show that the necklace lattice is the hierarchical lattice for 
which the M K  transformation is exact. The necklace can be mapped on the well known 
diamond (generalised) hierarchical lattice by two methods. 

(a )  The geometrical duality, but only in the peculiar case s = p ;  otherwise the 
parameters s and p are exchanged by the duality transformation. Moreover one must 
note that it is only in the continuum limit that the necklace and the diamond lattices 
are self-dual. 

(b) The classical renormalisation method which permits the necklace to be mapped 
on the diamond and vice versa. 

(c) Only two relations are necessary for the two mappings (necklace a diamond): 
when the geometrical duality works ( d  is an  integer) the duality expression (4.1) and 
the simplest mapping relation (3.1) permit the derivation of the other mapping 
expression by renormalisation (3.2). Here the general case is taken under consideration 
but, in general, the studied systems have integer dimensionalities. 

Consequently all results concerning Euclidean lattices studied by a bond moving 
PSRG method can be obtained through the medium of the mapping methods and the 
duality procedure (in the limiting case s = p )  mentioned above: the two classes of 
problems are perfectly equivalent. 
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